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SELF-SIMILAR SOLUTIONS TO THE PROBLEM OF THE
MOTION OF A SPHERICAL PISTON IN A HEAT-
CONDUCTING MEDIUM WITH CONSERVATION OF THE
ENERGY OF A POINT EXPLOSION

R. G. Dautov and E. V. Ermolin UDC 517.9:533.9

In this paper we study the problem of the motion of a spherical piston with fixed heat removal on it along
a heat-conducting medium with a distributed density, in which there initially occurred a point explosion which
released a finite energy E,. We study the case when the heat removal is compensated by the work performed
by the piston, i.e., the total energy of the medium remains constant and equal to the released energy Eg.

Analysis of the numerically found self-similar solutions revealed the following features.

For solutions which have the same total energy, as the velocity of the piston and the rate of heat removal
on it increase, the mass velocity or propagation of the forward wave front, the difference between the velocity
of the forward front of the perturbations and the velocity of the shock wave following it, and the relative frac-
tion of the thermal energy all decrease.

As E, increases, first of all, the behavior indicated above intensifies and, second, interesting features
are observed for two limiting problems — a pure explosion [1, 2] and maximum heat removal: the percentage
of the kinetic energy of the explosion in the problem without the piston (pure explosion) drops and the percent-
age of the kinetic energy of the explosion in the problem with maximum heat removal (the temperature at the
piston equals zero) increases.

We write the system of gas-dynamics equations in the Lagrangian mass coordinate system [3] in the form

a ’ 2
G =L B ek o (1) s
m " or?' Ot am' ot \ p am '
3 a(ts)  a(?
at om om

_z—P-"———w),W:~rgpu%%, @
_ﬁT_ . _ 5/2 5
8-.;‘,_1,p—RpT,u~aT 1Y =3

Here r is the radius, m is the Lagrangian mass variable, t is the time, v is the velocity, p is the density, p is
the pressure, ¢ is the internal energy, T is the temperature, W is the heat flux, and w is the coefficient of
thermal conductivity, characteristic for a high-temperature hydrogen plasma.

Dimensional analysis [4] shows that the problem of an instantaneous point explosion followed by the mo-
tion of a spherical piston has a self-similar solution when the following hold:

boundary conditions on the piston (m = 0)
w0, t) = vt W(, 1) = —u(0, t)p(0, 1); (2)

boundary conditions on the forward front of the perturbation wave my(t)

pmy, 1) = pgny'"*, v (i, 1) = T (mx, 1) = W (my, ) = 0; (3)

Kazan'. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 131-135, May-
June, 1987. Original article submitted March 3, 1986.
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conditions of conservation of the total energy of the medium
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The boundary-value problem (1)-(4) has a self-similar solution, for which the following formulas for the

transformation to one independent dimensionless. variable s are valid:

m= t1/237/16 p5/4a~1/s s (m, t) — t3“321/32p(1,/24a'—3/18}u (s),
v(m, t) = ARG (), o (m, 1) = ¢RI} (s),
T (m, t) — ?—-11235/1695/1%—3/% (s), W(m, t) — t_5/2R7lmpé/4a'l/8(p (s)

(5)

Using these transformation formulas, we write the boundary-value problem for the dimensionless func-

tions depending on s:

system of equations

dh 4 sdh_ 8. o sde @ _..d(5)
G TH AN T TN
s d6 | T sd(Pe) 05 dsph _ <.d(Pa) | d(a’9)
?7;+36-6 ds "y—1 ds = bf ds + ds °
s/2 df 5,
(P:—A’zﬁf 2%’ ='§1

condition on the piston (s =0)
a(0) = o3

conditions on the forward front of the perturbations SN
Mon) = 2535, 8.(9) = s57'% (s) = 1 (sn) = @ (sn) ==

and, conservation of energy

[

sy
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Here the values of the dimensionless constants are as follows:

(-L- + —%—)ds = €.

Oy = U, R—n}azpo—l{u ashs’ ey =E, R—s{«;pc—!ls allz’
The system (6) has the following first integrals

o(s) = 0,75M(s) — s/(28(s)A%(s))-
0.5s5(f/(y — 1) + «?/2) — A¥(8fa -+ @) = const.

where, taking into account (8), the constant in the second integral equals zero.
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The Hugoniot relations [3] on an isothermal shock wave are:
8y =8/, ¢ (27‘ 51/51)2 fvfe="tu

0. 5s1 5y 0.531 5
= — —t g === —— ] i S ’1
Oy = 0y + (1 — ) 5,12 s P2 =9y -+ w ( 61}@) (¥ )

(the indices 1 and 2 denote the values of the function in front of and behind the shock wave, respectively).

(12)

It can be shown analogously to [1, 2, 5] that in this problem the velocity of the forward front of the per-
turbations is finite, i.e., under the conditions (8) we have sy < «, while between the piston and the forward
front of the perturbations there should be an isothermal strong discontinuity, i.e., there exists a point s, €
(0, sy)», where the conditions (12) are satisfied.

The values of sy and s, are unique characteristic values of the boundary-value problem - there is a one-
to-one correspondence between each admissible pair of quantities e, o, and the pair of quantities sy, s,

In a neighborhood of the forward front of the perturbations sy the solution has the form (s = sy)

32 )
MO = hy+ g oy — )+ () = x”al(szv—s)z’-"
48304,
8(s) =0bn + I;V aysy— o)’ + ---,f(8)=ax(SN——S)2/5+-..; (13)
_3N BTN _ (15 v\
(p(s)— A al(sN s) “.’al_(géjv?v?v) -

If the positions of the singular points sy and s, in the solution sought are known beforehand, then this solution
can be found by numerically integrating the system (6) from the point s =sy — 7, at which the values of the
functions are calculated based on the formulas (13), up to the piston s = 0 using at the point of discontinuity 84
the relations (12).

The numerical experiments showed that for each value of the energy of the explosion e, there exists a
critical value of the piston velocity agf(ey) such that in problems with 0 =< oy = af (ey), when integrating in the
direction of the piston, there appears in a neighborhood of s =0 an instability in the numerical solution, which
is most characteristic for the behavior of the velocity a(s). This instability is of the same nature as the one
in the numerical solution in solutions of the TW II typet for the piston problem [5], as well as in solutions of
the problem of a pure explosion {2]. By the way, in [2] the behavior of integral curves was studied and itera-
tion methods were given for solving the problem of a pure explosion, making it possible to avoid the instability
in the numerical solution.

For brevity, in the rest of the presentation, we shall call the problem of the pure explosion (o, = 0) prob-
lem A, the problem with maximum heat removal (g # 0, £(0) =0) problem C, and the intermediate case (a= 0,
f(0) = 0) problem B.

In the vicinity of the piston each of the mentioned problems has its own form of the power series expan-
sion of the solution:

the problem A
3 \1/3 7 3 \1/3
As_(__) .91/3+...,0LS=——(——-) s34 .,
(s) 5, (s) 73, (14)

35 ) 8 \1/s
.

8 \1/3
10 =fo+ o () "o 4 L,
2f%2

the problem B

85k
a() = Sdgt st 8 =0+ 2t (LD Noy (15)
46 2 T, \T 7 7R ;
1) = fy + 4}Lfd/zs-l—..._,_(p(s):—-4—7»0('5,]j0—i—.._;

TTW II — temperature wave of the second kind [5].
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Here 6, £, and 6, £, are unknown parameters.

The expansions (14)-‘-(16) are employed in the course of the iteration process [2] in finding the solution in
the problems 0 < qj = af (e).

Figure 1 shows the graphs of the position of the point of the discontinuity s, as a function of the position
sy in solutions of problems A and C. The points of the discontinuity in the solutions B fall between the curves
A and C, since for fixed sy the maximum value of s, is reached on the solution of the problem C, while the
minimum value is reached in the problem A, This is shown in Fig. 2, which gives the values of the gas-dynamic
and thermal functions on the piston as a function of s, in the solutions with the same position of the forward
front of the perturbations sy =7. The figure also shows the dependence of the piston sy of the values of the
total and kinetic energy in the indicated solutions.

The dependence on s, shown in Fig. 2 is preserved for other values of sy also. This is indicated by the
graphs of the change in the total energy (Fig. 3) in the solutions of problems A (solid line) and C (broken line)
as a function of sy. In solutions of the problems A and C the characteristics (Fig. 4) of the changes of the
relative fraction of the kinetic energy ey /e, are interesting: in the solutions of the problem C it increases
monotonically as sN increases and therefore as the energy of the explosion e, increases, while in the solutions
of problems A it decreases,
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Figures 5-7 show the solutions of the problem B of the instantaneous energy release e, = 4725.5 with
simultaneous motion of the heat-removing piston with velocities oy =1.88, 2.90, 3.22, and 3.40 (lines 1-4).

As we can see, as the velocity of the piston and, correspondingly, the heat removal on it increase, the ve-
locity of the forward front of the perturbations decreases, and the velocity of the shock wave increases, and
therefore the region of heating in front of the shock wave decreases in size. At the same time, the relative
change in the velocity of the shock wave is small, while the velocity of the forward front of the perturbation
wave is quite substantial.

The closeness of the values of the pressures (the graphs are not shown) directly behind the shock waves
deserves special attention.
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MICROMECHANICS OF DYNAMIC DEFORMATION
AND FAILURE '

A. K. Divakov, L. S. Kokhanchik, UDC 539.374:620.178.7
Yu. I. Meshcheryakov, and M. M. Myshlyaev

As demonstrated in [1-4], dynamic deformation and failure of materials proceeds under conditions of
marked distribution for particle velocity. This distribution governs not only the dependence of mechanical
properties on deformation rate, but also material spalling resistance. The statistical nature of the occurrence
of dynamic deformation and failure processes at the microlevel makes it possible by analogy with liquid and
gas mechanics to use as a characteristic of these processes a distribution function for particle velocity which
gives complete information about processes at the microlevel. However, for many practical purposes, it is
entirely satisfactory to know only the first two features, i.e., average particle velocity and particle velocity dis-
persion. As will be shown below, these two characteristics may be determined simultaneously during a single
act of shock loading for a specimen,

A study of material ductility and strength is often carried out on the basis of analyzing time profiles for
loading and unloading waves, a record of which is accomplished by means of various types of fast-acting sen-
sors, i.e., manganin, piezoceramic, variable capacitance etc. Laser interferometers occupy a special place
among this type of recorder, making it possible to measure local dynamic movements and the free surface ve-
locity of specimens. One of the main virtues of interferometers is their sensitivity to particle velocity dis-
tribution. Use of laser interferometry makes it possible not only to record the time profile of a shock wave,
but also to obtain quantitative information about the evolution of the particle velocity distribution function at
loading and unloading fronts. This information is particularly valuable in combination with microstructural
studies of materials, since it makes it possible to study structural changes in the material during dynamic de-
formation. Whereas the time profile for the shock wave characterizes dynamic deformation and failure pro-
cesses at the microlevel, the velocity distribution function and its features are microscopic characteristics of
these processes.

Leningrad. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 135-144,
May-June, 1987. Original article submitted March 3, 1986.
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